FOR more than three decades, Lawrence
Livermore's Laser Programs have earned a worldwide reputation for
pushing the limits of laser technology. But few accomplishments have
rivaled the one celebrated in the early morning hours of May 23, 1996,
by an exhausted but exuberant crew that just used a revolutionary laser
that produced more than a quadrillion watts of energy, a world record.![]() ![]() ![]() ![]() |
![]() ![]() |
![]()
Petawatt Development |
![]() ![]() 0.1 picosecond in a temperature-controlled clean room in the basement of the Nova building. Instead of consisting of a single, very specific wavelength (color) produced in conventional lasers, these ultrashort pulses contain a broad spectrum. Before amplification, the short-pulse beam is sent to the pulse stretcher. Here, the pulse is stretched by using a diffraction grating to spread out the different wavelengths (colors), separating each frequency component. By passing each color through a different optical path length (the red components travel a shorter length than the blue), the pulse is stretched in time by a factor of 30,000 to 3 nanoseconds. The pulse is then amplified more than a trillion times without damaging the laser glass as the pulse travels through a series of amplifier modules, including a portion of one arm of the Nova laser for the final amplifier stage. ![]()
The Grating Challenge |
Petawatt Spinoffs
The technology developed for the Petawatt has provided many unexpected spinoffs. In particular, Lawrence Livermore's experimental and theoretical studies of laser-induced damage, carried out in support of the Petawatt laser's development, have created valuable new technologies. Researchers, led by Brent Stuart, using the petawatt front end made pioneering measurements of the laser damage threshold for a multitude of optical materials (crystal and glass) lasting from 0.1 picosecond to 1 nanosecond. A fundamental change in the damage mechanism is observed when the pulse length is less than approximately 20 picoseconds. This change in mechanism is accompanied by a dramatic change in the morphology of the damage site.
The discovery and explanation of this difference formed the basis of a collaborative program with medical researchers on the interaction of short laser pulses with human tissue. Laser ablation of tissue (removal of tissue by its being "blown off") has great promise in a number of therapeutic situations requiring precise material removal with minimal disturbance of the surrounding tissue. Potential applications include precision cutting (as in keratonomy), perforation (applicable to middle ear surgery), pressure release for hydroencephaly, and dental drilling. The advantage for surgery with lasers whose pulses last less than a picosecond is that the duration is far too short to transfer heat to surrounding tissue. (See the October 1995 S&TR for more on LLNL efforts to develop short-pulse lasers as safe and painless surgical tools.) The ability to cut and drill material with no heat or shock has also found important application in LLNL's role in nuclear weapon stockpile management.
Two R&D 100 Awards were earned as a result of the need to manufacture diffraction gratings to a size, precision, and resistance to optical damage never before attained. The first, earned in 1994, was the development of multilayer dielectric gratings for use in dispersing light into constituent colors, or wavelengths, for many different applications. These gratings, made of multiple layers of thin dielectric film, have much higher damage thresholds than metallic gratings and can be custom designed for narrow- or broad-bandwidth use. Besides their use in new generations of extremely high-powered lasers, they may be used in entirely new products in such areas as remote sensing and biomedical diagnostic systems. (See the September 1994 E&TR for more information.) Furthermore, the grating development laboratory and technology will be used for developing the extensive diffractive optics used throughout the final focus assembly of the planned National Ignition Facility.
The technology developed to produce the multilayer and metallic gratings with extremely small features (down to 0.1 micrometer) may also give a dramatic boost to American producers of flat-panel displays. The LLNL process to laser interference lithography enables the production of large-area field-emission displays (FEDs). This display can be thinner, brighter, larger, and lighter and can consume less power than traditional active matrix liquid crystal displays. The new technology earned its inventors an R&D 100 Award in 1996 (see the October 1996 S&TR).
![]() ![]() |
Four Options![]() ![]() ![]() ![]() ![]() ![]()
Focusing Petawatt Pulses |
Possible Key to Fast Ignition![]() ![]() |
![]() ![]() ![]()
A New Chapter in Physics |
Key Words: chirped-pulse amplification, fast ignition, laser interference lithography, multilayer dielectric gratings, National Ignition Facility, Nova, Petawatt laser, plasma mirror, Ti:sapphire laser, 100-TW laser.
For further information contact Michael Perry (510) 423-4915 (perry10@llnl.gov).
MICHAEL PERRY joined
Lawrence Livermore National Laboratory as a physicist in October 1987.
He is a graduate of the University of California at Berkeley with a
B.S. in both nuclear engineering and chemical engineering (Summa Cum
Laude, 1983), an M.S. in nuclear engineering (1984), and a Ph.D. in
nuclear engineering/physics (1987). He is currently the leader of the
Petawatt Laser Project and Associate Program Leader for Short-Pulse
Lasers, Applications, and Technology. He has authored more than 70
professional publications.